Einführung in die NMR Spektroskopie

Präzession einer Gruppe von identischen Kernen in einem Magnetfeld. Das Feld B0 induziert eine makroskopische Magentisierung der Probe in Richtung des angelegten magnetischen Feldes, dass die z-Richtung definiert. In x- und in y-Richtung gibt es eine statistische Verteilung der Kerne und deswegen keine Magnetisierung in x- oder y-Richtung. Der NMR-Spektroskopie liegen die Wechselwirkung des Kernspins mit elektromagentischer Strahlung im Radiowellenbereich (i.d.R. 60 Mhz bis 1 Ghz) zugrunde.

Während bei der optischen Absorption Wechselwirkungen des elektrischen Feldvektors mit den elektrischen Dipoleigenschaften von Materie stattfinden, beobachtet man bei der magnetischen Resonanzspektroskopie die Wechselwirkungen des magnetischen Feldvektors mit den magnetischen Dipoleigenschaften der Materie.

Um Absorption von Strahlung zu erreichen, müssen unterschiedliche Energiezustände vorhanden sein. Dies erreicht man, in dem man die Materie in ein Magnetfeld bringt.

Kernspin und magnetisches Moment eines Kerns

Der Kernspin und sein magnetisches Moment sind zueinander proportional:

$$\vec{\mu} = g_N \beta_N \vec{I}$$

$$\mu: \text{ Hagner}$$

$$g_N: \text{ Kern } g_N: \text{ Kern } g_N: \text{ Bohr } M$$

$$q: \text{ elektris}$$

$$m: \text{ Masse}$$

$$h: \text{ Planck-}$$

$$h: h/(2\pi)$$

 μ : magnetisches Moment des Kerns g_N : Kern g-Faktor, eine Konstante die vom Kern selbst abhängt β_N : Bohr Magneton, benannt nach Niels Bohr q: elektrische Ladung des Kerns m: Masse des Kerns, h: Planck-Konstante, benannt nach Max Planck \hbar : $h/(2\pi)$

 γ : gyromagnetisches Verhältnis, q/(2m)

Nach der Quantentheorie kann der Kernspin durch eine Spin-Quantenzahl, *I*, ausgedrückt werden: $\vec{I} = \sqrt{I \cdot (I+1)}$

Die Frequenz, mit der Kernspins im magnetischen Feld B_0 um die Richtung des B_0 -Feldes präzedieren, nennt man Lamorfrequenz:

$$\omega = \frac{\text{magnetisches Moment}}{\text{Drehimpuls}} \cdot B_0 = \frac{\mu \cdot B_0}{2\pi I} = \frac{g\beta_N}{\hbar} B_0$$

Kernspins einiger Isotope und NMR Sensitivität

Nucleus	Mass (g/mol)	Charge (x e)	Spin	Natural abundance (%)	Relative sensitivity
$^{1}\mathrm{H}$	1	1	1/2	99.98	1.000
$^{2}\mathrm{H}$	2	1	1	0.016	0.0096
^{12}C	12	6	0	98.96	-
¹³ C	13	6	1/2	1.11	0.016
^{14}N	14	7	1	99.64	0.001
$^{15}\mathrm{N}$	15	7	1/2		
^{16}O	16	8	0		-
¹⁷ O	17	8	5/2		
¹⁹ F	19	9	1/2	100	0.834
³¹ P	31	15	1/2	100	0.066
^{32}S	32	16	0	95.06	-

Einführung in die NMR Spektroskopie

- (a) Ein Kern mit Kerspinquantenzahl I = 1 kann 3 Orientierungen im einnehmen.
- (b) Im Magnetfeld ist der magnetische Dipol und der Kernspin in drei möglichen Richtungen orientiert.
- (c) Die drei möglichen Richtungen des Dipols bzw. des Spins entsprechen mit drei Unterschiedlichen Energieniveaus des Kerns im Magnetfeld.

Quantenmechanische Begrenzung des kernmagnetischen Moments in Richtung z des B_0 -Feldes

Die Quantenmechanik begründet, dass die magnetischen Momente in einem externen Magnetfeld B₀ in Feld-Richtung (*z*-Richtung) nur bestimmte Werte annehmen können.

 $\mu_z = m_I g_N \gamma \hbar = m_I g_N \beta_N \qquad m_I: I, I-1, I-2, \dots, I-2I \qquad \qquad \begin{array}{l} m_I: \text{ Kompo} \\ \text{Kernspins} \end{array}$

*m*_{*I*}: Komponente des Kernspins in z-Richtung

Die Energie des Kerns in einem Magnetfeld ist gegeben durch:

$$E = -\overrightarrow{\mu_z} \cdot \overrightarrow{B_0} = -m_I g_N \gamma \hbar B_0 = -m_I g_N \beta_n B_0; \text{ mit } \beta_N = \gamma \hbar \qquad \beta_N = \frac{q \cdot h}{4m\pi} = \frac{q\hbar}{2m} = \gamma \hbar$$

Für Wasserstoffkerne (Protonen): $m_I = +1/2$, -1/2, das heißt zwei Energiezustände werden beobachtet:

$$E_{L} = -\frac{1}{2} g_{N} \gamma \hbar B_{0} , \text{ für } m_{I} = +\frac{1}{2}$$
$$E_{H} = +\frac{1}{2} g_{N} \gamma \hbar B_{0} , \text{ für } m_{I} = -\frac{1}{2}$$

Die Energiedifferenz ist dann:

$$\Delta E = -g_N \gamma \hbar B_0$$

(für die Erläuterung der Symbole: siehe zweites Bild) Resonanzfrequenzen einiger Kerne bei $B_0 = 2.3487$ T und Kern *g*-Faktoren

Kern	Spin	Resonanzfrequenz (MHz) bei einem Feld von 2.3487 T	g-value
¹ H	1/2	100.00	5.585
${}^{10}B$	3	10.75	0.6002
^{11}B	3/2	32.08	1.792
¹³ C	1/2	25.14	1.404
^{14}N	1	7.22	0.4036
15 N	1/2	10.13	-0.5660
¹⁷ O	5/2	13.56	-0.7572
¹⁹ F	1/2	94.07	5.255
²⁹ Si	1/2	19.87	-1.110
³¹ P	1/2	40.48	2.261
³⁵ Cl	3/2	9.8	0.5472
Elektron	1/2	65752.8	2.000323

Magnetische Resonanzübergänge

Die Resonanzfrequenz in einem Experiment zur magnetischen Resonanz hängt von der Stärke des Magnetfeldes *B*₀ ab.

Effekt der Radiowellenfeldes B1 auf die um B0 präzedierenden Kerne

(a) Effekt eines elektromagnetischen Wechselfeldes B_1 , orientiert in *x*-Richtung. Die erzwungene Phasenkohärenz der Spins induziert eine Quermagnetisierung M_y in *y*-Richtung.

(b) Präzession der Magnetisierung entlang der Richtung des B_1 -Feldes (das die x'-Richtung des rotierenden Koordinatensystems beschreibt).

Überlagerung der Präzessionen um die Richtungen des B₀ bzw. des B₁-Feldes

Das B_1 -Feld rotiert mit der Lamorfrequenz um die z-Achse. Die Präzession um die Achse des B_1 -Feldes ist kleiner als um die Achse des B_0 -Feldes da B_1 kleiner ist als B_0

Schema zum Aufbau eines CW NMR Spektrometers

Chemische Verschiebung

Durch das angelegte B_0 -Feld werden in der elektronischen Umgebung des Kerns Ringströme induziert die ihrerseits ein Magnetfeld erzeugen das dem B₀-Feld entgegengesetzt gerichtet ist. Dadurch ist die lokale Feldstärke am Ort des untersuchten Kerns etwas kleiner als B_0 , nämlich

$$B_{loc} = B_0 - \sigma B_0$$

Die Resonanzbedingung lautet dann

$$h\mathbf{v} = \boldsymbol{\mu}_z \cdot (B_0 - B_0 \boldsymbol{\sigma}) = \boldsymbol{\mu}_z \cdot B_0 (1 - \boldsymbol{\sigma}) = g_N \boldsymbol{\beta}_N B_0 (1 - \boldsymbol{\sigma})$$

Da sowohl die Resonanzfrequenz als auch die elektronische Abschirmung der Stärke des B₀-Feldes proportional sind, und man die Kerne verschiedener Moleküle vergleichen möchte, misst man die Abschirmung (σ) in Bezug auf eine Referenzsubstanz (Index ref). Für die 1H-NMR in organischem Lösungmittel ist das meist Tetramethylsilan (TMS). In TMS ist die Elektronendichte am Ort der Methylprotonen vergleichsweise hoch und die Kerne sind gut abgeschirmt.

Für TMS-Protonen sei

$$hv_{ref} = \mu_z \cdot B_{ref} = \mu_z \cdot B_0 \left(1 - \sigma_{ref}\right) = g_N \beta_N B_0 \left(1 - \sigma_{ref}\right)$$

Für andere Protonen:

$$h\mathbf{v} = \boldsymbol{\mu}_z \cdot \boldsymbol{B} = \boldsymbol{\mu}_z \cdot (\boldsymbol{B}_0 - \boldsymbol{B}_0 \boldsymbol{\sigma}) = \boldsymbol{\mu}_z \cdot \boldsymbol{B}_0 (1 - \boldsymbol{\sigma}) = \boldsymbol{g}_N \boldsymbol{\beta}_N \boldsymbol{B}_0 (1 - \boldsymbol{\sigma})$$

Es folgt:

$$\frac{v_{ref} - v}{v_{ref}} = \frac{\mu_z B_0 \left(1 - \sigma_{ref}\right) - \mu_z B_0 \left(1 - \sigma\right)}{\mu_z B_0 \left(1 - \sigma_{ref}\right)} = \frac{\sigma - \sigma_{ref}}{1 - \sigma_{ref}}$$

Die Verschiebung der Absorptionsfrequenz hängt nicht mehr von *B*⁰ ab, wenn man sie relativ zu einem Standard angibt.

Man definiert die Chemische Verschiebung in parts per million (ppm):

$$\delta = \frac{B_{ref} - B}{B_{ref}} \times 10^6 \text{ ppm} = \frac{V_{ref} - V}{V_{ref}} \times 10^6 \text{ ppm}$$

Ringstrom-Effekt auf das lokale magnetische Feld am Ort der aromatischen Protonen in Benzen

Chemische Verschiebungen von ¹H -Kernen organischer Verbindungen

Spin-Spin Kopplung führt zur Aufspaltung der Absorptionspeaks

Spin-Spin-Kopplung am Beispiel Alanin

[in D₂O tauschen die NH2-Protonen gegen Deuterium (D=²H), deshalb D₂N]

Die Protonen der Methylgruppe besitzen aufgrund der freien Drehbarkeit um die C—C Bindung dieselbe elektronische und chemische Umgebung. Sie sind daher magnetisch equivalent.

Die magnetischen Momente der Kernspins dieser 3 Methylprotonen können sich auf verschiedene Weise zu einem Gesamtmoment der Methylgruppe addieren:

Spins der 3 Methylprotonen:

Beitrag der Methylgruppe zum lokalen Feld am $C_{\alpha}\text{-}Proton$

Die Methylgruppe kann demnach das lokale Magnetfeld am Ort des einzelnen Wasserstoffatoms am C_{α} auf 4 verschiedene Möglichkeiten verändern. Daher sieht man für das einzelne Proton an C_{α} insgesamt 4 Peaks.

Zahl und Intensitäten der Multiplett-Peaks

Aufgrund ihres magnetischen Momentes beeinflussen die Kerne in der Nachbarschaft das lokale Magnetfeld am Ort eines Kerns. Je nachdem wieviele Nachbarspins zum lokalen Feld beitragen, beobachtet man eine entsprechende Aufspaltung des Resonanzpeaks eines Kerns in eine Multiplett-Struktur.

Zahl benachbarter, equivalenter Kerne:	Inte Mu	ens ıltip	ität olet	sve t:	rhä	ltnis	s in	ı	Zahl der Peaks im Multiplett
0				1					1
1			1		1				2
2		1		2		1			3
3	1		3		3		1		4
4	1	4		6		4		1	5

Der Resonanzpeak eines Kerns spaltet in n+1Peaks auf, wenn der Kern mit n magnetisch equivalenten Nachbarkernen koppelt.

Spin-Spin Kopplung führt zur Aufspaltung der Absorptionspeaks

NMR-Spektrum von Ethylbenzen (Phenylethan)

¹H-NMR Spektrum von Ethylbenzen. Das Triplett der Methyl-(CH3-)protonen (c), das Quadruplett der Methylen-(CH2-)protonen (b) und der Peak der aromatischen Protonen (a) werden bei wachsender chemischer Verschiebung beobachtet.

Die Skalare (J-) Kopplung benachbarter Kerne

Die ²*J*_{HH} Spin-Spin Kopplung. Die Spin-Information wird von einer Bindung auf die andere durch einen Mechanismus übertragen, dem eine niedrigere Energie von Elektronen mit parallelem Spin in benachbarten Orbitalen zu Grunde liegt (Hund'sche Regel von der maximalen Multiplizität). In diesem Fall ist *J* negativ, verbunden mit einer niedrigeren Energie wenn die Spins parallel sind.

Abhängigkeit der Kopplungskonstante vom Torsionswinkel

Abhängigkeit der vicinalen ³J (H,H) -Kopplung vom Torsionswinkel zwischen zwei Wasserstoffatomen

Koaleszenz der ¹H-NMR-Signale der Methylgruppen in Dimethylformamid

Diastereotope Protonen sind magnetisch nicht equivalent

¹H-NMR Spektrum von Valin. Das C_{α} Kohlenstoffatom ist asymmetrisch. Deshalb sind die beiden C_{β} -Kohlenstoffatome diastereotop zueinander und ergeben verschiedene Resonanzsignale bei verschiedenen chemischen Verschiebungen. Man erhält zwei Dupletts wegen der Kopplung mit dem Wasserstoffatom an C_{β} .

NMR-Spektrum von Ethylbenzen (Phenylethan)

¹H-NMR Spektrum von Ethylbenzen. Das Triplett der Methyl-(CH3-)protonen (c), das Quadruplett der Methylen-(CH2-)protonen (b) und der Peak der aromatischen Protonen (a) werden bei wachsender chemischer Verschiebung beobachtet.

250 MHz ¹H-NMR Spektrum von Anillin

250 MHz ¹H-NMR Spektrum von Nitrobenzol

Bsp.:

 $\delta(H) = 7.27 \text{ ppm} + \sum S$

				para-Nitroanisol:
	ortho	meta	para	1
Methyl–	-0.17	-0.09	-0.18	δ (H 2.6) [ppm]
Ethyl–	-0.15	-0.06	-0.18	
Fluoro–	-0.30	-0.02	-0.18	0-OCH ₃ m -NO ₂
HO-	-0.50	-0.14	-0.4	7.27 - 0.43 + 0.17
O-CH ₃	-0.43	-0.09	-0.37	=7.01 (exp. gef. 6.88)
-OCOCH ₃	-0.21	-0.02	-0.0	
$-NH_2$	-0.75	-0.24	-0.63	
$-N(CH_3)_2$	-0.60	-0.10	-0.62	δ (H 3.5) [ppm]
-CHO	+0.58	+0.21	+0.27	o (110)o) [ppiii]
-COCH ₃	+0.64	+0.09	+0.3	m -OCH ₃ ρ -NO ₂
-COOCH ₃	+0.74	+0.07	+0.20	7.27 - 0.09 + 0.95
$-NO_2$	+0.95	+0.17	+0.33	=8.13 (exp. gef. 8.15)

Alle Werte in ppm

Protonen-Entkopplung am Beispiel Lysin in D₂O

Chemische Verschiebungen von ¹³C -Kernen organischer Verbindungen

¹³C-NMR Spektrum von Dichlorpropan

¹³C-NMR Spektrum von *p*-Nitrobenzaldehyd

³¹P-NMR Spektrum von Adenosintriphosphat (ATP)

Anisotropie der chemischen Umgebung und der chemischen Verschiebung von ³¹P in einem Phospholipid

Sauerstoffatome O3 und O4 sind die freien Sauerstoffatome des Phosphats, O1 und O2 die Sauerstoffatome der Ester-Bindungen des Phospholipids zum Glycerol bzw. zur polaren Kopfgruppe. Anisotropie der chemischen Umgebung und der chemischen Verschiebung von ³¹P in einem Phospholipid

³¹P-NMR und Lipid-Phasenverhalten

³¹P-NMR *in vivo*: Spektrum des menschlichen Unterarms

³¹P-NMR Spektrum des menschlichen Unterarms nach Belastung

³¹P-NMR Spektrum nach10 min sportlicher Übung.

Die 40 MHz Spektren wurden mit einer Oberflächenspule (4 cm Durchmesser) aufgezeichnet.

10 Abtastungen des Spektrums wurden gemittelt. Das Spin-System konnte für 2 s relaxieren. Gesamtzeit pro Aufnahme 22s.

Kontrollspektrum A wurde vor der Übung aufgezeichnet.

Freier Induktionsabfall und Fourier Transform (FT-) NMR-Spektroskopie

Fourier Transform (FT-) NMR-Spektrum von BPTI

FT- ¹H-NMR Spektrum des basischen Trypsin-Inhibitors aus Rinderpankreas bei 100 MHz. Einhundert FIDs wurden nach 90° Pulsen akkumuliert Magnetic Resonance Imaging (MRI) or NMR-Tomographie, Kernspin-Tomographie

<u>Messgröße:</u> Kernmagnetisierung in einem Volumenelement, abhängig von der Spindichte und den longitudinalen und transversalen Relaxationszeiten.

Projektions-Rekonstruktionsmethode (Lauterbur, 1973)

Messung von NMR-Tomogrammen und Bildkonstruktion: Anwendung von Gradientenfeldern in einer ausgewälten Scheibe durch das Objekt.

Dem B₀-Feld wird ein Gradientenfeld überlagert.

Da an verschiedenen Orten der Probe unterschiedliche Feldstärken herrschen, erscheinen die Kerne entsprechend ihrer Räumlichen Lage bei verschiedenen Frequenzen.

Die Richtung der Feldgradienten wird sukzessive in der Ebene um den Winkel 180°/n insgesamt n-mal gedreht. Mittels Computer wird aus n 1-dimensionalen Spektren der 2-D Schnitt berechnet.

Erstmals getestet mit zwei Wasser-gefüllten Reagenzgläsern als"Probe".

2-dimensionales Fourier Imaging (Kumar et al., 1975)

Anlegen eines Scheiben-Selektionsgradienten

Einstrahlen eines Pulses, z.B. 90° oder 180° Puls zur Anregung der Kernspins in einer dünnen Scheibe.

Zuerst wird ein Gradient G_x für die Zeit t_x in x-Richtung eingeschaltet, dann ein Gradient G_y in y-Richtung für die Zeit t_y . Das NMR-Signal wird für n äquidistante Werte von t_y digitalisiert und registriert. Dann wird dieses Verfahren für n äquidistante Werte von t_x wiederholt sodass man eine Matrix von n² Messpunkten erhält. Das zweidimensionale Bild erhält man durch 2-D Fouriertransformation.

Bestimmung der transversalen (Spin-Spin) Relaxationszeit T_2 mit dem Spin-Echo Verfahren

 T_2 wurde erstmals durch Spin-Echo Methode mit 90°- τ -180° Pulssequenz (Erwin L. Hahn, 1950) bestimmt.

Heute wird das Mehrfach Spin-Echo Verfahren von Carr, Purcell, Meiboom and Gill benutzt (als CPMG-Spin-Echo Folge bezeichnet, Carr and Purcell, 1954; Meiboom and Gill, 1958). Dieses Verfahren beginnt mit einem 90°-Impuls, auf den eine Serie von 180° Pulsen folgt.

Mediosagitalschnitt durch einen menschlichen Schädel

Für das Experiment wurde eine CPMG Mehrfach-Echo-Sequenz verwendet. Jedes Bild entspricht einem der acht Echos. Abgebildet ist in allen 8 Echos dieselbe Scheibe von etwa 7 mm Dicke, die bei der Messung in 7 x 7 Matrixelemente unterteilt war. Pro Matrixelement wurden 2 Spektren (FID) akkumuliert.

Bestimmung der longitudinalen (Spin-Gitter-) Relaxationszeit T₁

Longitudinale (Spin-Gitter)-Relaxationszeiten in verschiedenen Geweben (Damadian *et al.*, 1971, 1981)

Mensch (¹H-NMR)

Ratte (³¹P-NMR)

Gewebe normal,	$T_{I}(s)$ tu	morös,	<i>T</i> ₁ (s)	Gewebe normal,		$T_{I}(s)$ tumorös,	$T_{I}(\mathbf{s})$
Haut	0.62 1.05			Leber	2.33	5.98	
Skelettmuskel	1.02 1.41			Skelettmuskel	2.19 5.3	8	
Milz	0.70 1.13			Gehirn	1.13 5.1	9	
Lunge	0.79	1.11		Niere	1.43		
Knochen	0.55 1.03			Darm	1.97		
Speiseröhre	0.80 1.10						
Magen	0.76	1.23					
Darm	0.64 1.22						
Leber	0.57 0.83						
Gewebefett	0.20						

Multiple Sklerose — Transversalschnitt durch das Gehirn bei 0.28 T CPMG-Spin-Echo Technik, Schichtdicke: 0.6 mm, Echozeit TE: 34 ms

Die hellen Stellen (Stellen erhöhter Signalintensität) entsprechen Entmarkungsherden. Sie sind besonders deutlich in Abbildung B. der unterschiedlich T_2 -gewichteten Bilder der CPMG Echosequenz.

MR-Tomogramme menschlicher Schädel

a. und b. Hirnstammtumor im Ponsbereich

- a. Gute Darstellung eines Tumors durch hohe Signalintensität (TE = 50 ms, 2 Tesla)
- b. Röntgen-Computertomogramm mit sagittaler Rekonstruktion.
 Raumanforderung an der Schädelbasis.
- c. MR-Tomogramm im Sagittalschnitt. Vom Corpus pineale ausgehender raumfordernder Prozess mit hoher Signalintensität im T1 gewichteten SE-Modus.
- d. MR-Tomogramm, T₁ betont, im Spin-Echo-Modus, TE = 50 ms / TR = 650 ms. Die Metastase () zeigt sich etwas weniger intensiv als das Begleitödem ().
- e. Transversales Schnittbild durch den Schädel in Höhe des Ventrikelsystems,
 2.0 Tesla Ausgedehnter intensiver Mediainfarkt

Beispiele von NMR-Tomographen

